Steel Structures

Department of Civil & Structural Engineering

Dr Mihail Petkovski

Lecturer in Structural Dynamics

Contact

m.petkovski@sheffield.ac.uk
+44 (0) 114 222 5759

Department of Civil and Structural Engineering
Sir Frederick Mappin Building
Mappin Street,
Sheffield,
S1 3JD

Profile

After graduating from Sts Cyril and Methodius University in 1982, Mihail Petkovski worked for 11 years in the Institute for Earthquake Engineering and Engineering Seismology (IZZIS) in Macedonia, as a research associate (1982-1990) and lecturer (1990-1993). He worked on research projects involving (i) quasi-static tests of steel structure assemblies, (ii) in-situ dynamic testing of full scale structures and (iii) shaking table testing of reduced scale models of concrete and masonry buildings and prototypes of structures for high-voltage networks and equipment for nuclear power plants. During this period Mihail obtained an MSc degree in Earthquake Engineering.

Mihail joined The University of Sheffield in 1993 as a PhD Student. In 1997 he was employed by as a research associate in the Department of Civil and Structural Engineering. In the period between 1997 and 2001 he developed mac2T, Sheffield’s unique facility for multiaxial compression of concrete at elevated temperature. Mihail designed and commissioned the hardware and wrote the software for data acquisition and control of the rig. In the last 10 years mac2T was used for over 300 complex multi-stage experiments, in a succession of research projects funded by EPSRC, EU, UK government and Industry (Nuclear Electric/British Energy, MOD/QinetiQ). In 2007 Mihail was appointed Lecturer in Structural Dynamics in the Department of Civil and Structural Engineering at The University of Sheffield.

Recent activities and achievements

Experimental continuum mechanics of pressure sensitive materials:

  • concrete at elevated temperature: effects of heat-load regimes on mechanical properties and changes in the microstructure of concrete, with a focus on LITS (load induced thermal strain);
  • concrete and rock under multiaxial compression: relationship between development of damage in the material and the macroscopically observed stress-strain behaviour (of test specimens).

Earthquake engineering of multi-storey buildings:

  • structural systems for improved seismic behaviour of buildings: connections and plastic hinge regions in steel and concrete frames;
  • systems for control of the seismic response of frames: passive friction/yield connections and semi-active control.

Publication(s)

(2016). The effect of concrete composition on laser scabbling. Construction and Building Materials, 111 (3), pp. 461-473. (Full Text).
(2016). Laser scabbling of mortars. Construction and Building Materials, 124 (124), pp. 37-44. (Full Text)., Abstract: Laser scabbling of concrete is the process by which the surface layer of concrete may be removed through the use of a low power density laser beam. Previous research has suggested that the driving force responsible for laser scabbling is developed within the mortar. The aim of this investigation...
(2016). Effects of strain rate and moisture content on the behaviour of sand under one-dimensional compression. Experimental Mechanics, 56 (9), pp. 1625-1639. (Full Text)., Abstract: The influence of strain rate and moisture content on the behaviour of a quartz sand was assessed using high-pressure quasi-static (0.001 /s) and high-strain-rate (1000 /s) experiments under uniaxial strain. Quasi-static compression to axial stresses of 800 MPa was carried out alongside split...
(2015). Centralized semi-active control of post-tensioned steel frames. Earthquake Engineering and Structural Dynamics, 44 (1), pp. 79-100. (Full Text).

Pages